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OBJECTIVE: To design elastomeric polypeptide bionaterials in order to achieve 
diverse forms of free energy transduction by these water-miscible hydrophobic folding 
and assembling macrorrolecules, thereby to elucidate the underlying mechanisms and 
principles, and therefrom to make possible new materials and applications. 

APPROACH: To design protein-based polymers capable of energy conversions involving 
mechanical, pressure, thermal, chemical, electrical, and electromagnetic energies, due 
to their capacity to exhibit inverse temperature transitions of hydrophobic folding 
and assembly as the temperature is raised over a characteristic tetrperature interval, 
the onset of which is designated as Tt 

The protein-based polymers are prepared by means of reccmbinant EKA. technology. 
The products are purified utilizing the inverse temperature transitional properties of 
the polymers and verified by the standard physical and chemical means and by 
biological testing. 

The primary purpose of the designed and prepared protein-based polymers was to 
demonstrate, ultimately, all fifteen pair-wise free energy transductions involving the 
above six energies. Polymers also can be prepared to demonstrate a very important 
sixteenth,  chemo-chemical,  transduction. 

MAJOR ACCOMPLISHMENTS! (8 and 1/3 years) 
General   Perspective:   The   hydrophobic   effect,   or   hydrophobic 

folding,   has  long been appreciated as relevant  to protein structure and 
function.     Until  this work,   there has not been a  systematic development 
of what controls hydrophobic  folding nor has  there been a reasonable 
assessment of  just how important hydrophobic  folding is  in protein 
structure and function.     An elastomeric model protein system was used 
where  the many factors controlling hydrophobic  folding could be 
isolated,   demonstrated and evaluated and where those  factors could be 
used in de novo designs  to achieve  function. 

It has also long been appreciated that raising the  temperature to 
arrive  at  a  functional protein structure  is  indicative  of hydrophobic 
folding,   as occurs  on raising the temperature of  a cold denatured 
protein.     Using  the  special   family of  elastomeric model  proteins   that 
exhibit  a phase  transition of hydrophobic   folding and assembly,   we  have 
carefully assessed the hydrophobic  folding and assembly process  in terms 
of  the  temperature  for the onset of  folding,   Tt.     The result has been 
the experimental development of a set of  five axioms  for protein 
function and engineering. 

Remarkably,   using specific designs of our model protein system, 
virtually every pair-wise energy conversion of metabolism can be 
demonstrated.     This  is achieved by means  of controlling the temperature 
of  the hydrophobic  folding and assembly transition.     It  involves 
interconversion of the  free energies,   the  intensive variables  of which 
are — mechanical   force,   pressure,   temperature,   chemical  potential, 
electrical potential and electromagnetic  radiation.     More explicit 
demonstrations utilize designed model proteins  and corresponding energy- 
inputs  of heat,   chemical  energy,   pressure,   electrochemical  energy,   and 
light  to drive contraction in visual demonstration of  the mechanical 
energy output  of  lifting a weight.     This   is  documented  in part by a 
video  of  designed elastomeric model  proteins   "pumping  iron." 

Having demonstrated the phenomenology of changing protein 
structure and attaining function by means  of controlling hydrophobic 
folding and assembly,   it  became possible  to  determine  the  underlying 
physical  process.     It  is  one  of  competition  for hydration between apolar 
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(hydrophobic) and polar (e.g., charged) groups constrained to coexist 
along a protein chain sequence, rather than being free to separate as 
oil from vinegar.  The technical details are developed below. 

Stepwise Experimental Development  of  the  Phenomenology: 
The initial experimental observation was that Tt decreases for more 
hydrophobic residues and increases for more polar residues.  This is the 
basis for a Tt-based hydrophobicity scale. This is Axiom 1.  By 
independent measurement, using microwave dielectric relaxation, the 
value of Tt is found to be a measure of the amount of hydrophobic 
hydration. Since hydrophobic association can be observed as a phase 
transition, Tt = AHt/ASt. The ratio for hydrophobic hydration has been 
experimentally observed to be smaller (corresponding to a lower value of 
Tt) for more hydrophobic hydration and larger (corresponding to a higher 
value of Tt) for less hydrophobic hydration. 

Raising the temperature from below to above Tt drives hydrophobic 
folding and assembly.  When the model elastic proteins are cross-linked 
into an elastomeric band and the temperature is raised from below to 
above Tt, the band contracts and lifts a weight.  This somewhat obvious 
demonstration of thermo-mechanical transduction represents Axiom 2. 

Controlling the value of Tt controls the hydrophobically folded 
and assembled state of the protein.  Essentially every variable (energy- 
input) imposed upon an aqueous system containing an appropriately 
designed model protein changes the value of Tt.  Lowering the 
temperature from above to below an operating temperature drives 
hydrophobic folding and assembly at constant temperature, and can be 
used to do mechanical work of lifting a weight when the polymer is 
cross-linked as an elastic matrix.  This is Axiom 3.  A video has been 
prepared showing different energy inputs, that lower Tt from above to 
below an operating temperature, to drive contraction and to perform the 
mechanical work of lifting a weight. 

Any two different energy inputs, which with the properly designed 
elastic model protein can individually drive hydrophobic folding and 
assembly by lowering Tt, can be converted one into the other by being 
part of the same hydrophobic folding domain.  This is Axiom 4.  An 
example is the conversion of the electrical energy of the reduction of a 
redox couple into the chemical energy of picking up a proton due to the 
shift in pKa of the chemical couple caused by formation of the more 
hydrophobic reduced state.  This is an example of electro-chemical 
transduction as occurs in the development of a proton gradient during 
electron transport in the inner mitochondrial membrane. 

Axiom 5 is the experimental demonstration that energy conversion 
by this mechanism is more efficient for more hydrophobic domains, hence 
one of the advantages of oxidative phosphorylation occurring within a 
lipid bilayer membrane.  An experimental basis for this statement 
resides in the observation of supra-linear hydrophobic-induced pKa 
shifts discussed below. 

Stepwise    Experimental    Development    of    the    Physical    Basis: 
Implication of Dependence of Tt on Hydrophobicity and Charge:   On the one 
hand, adding a CH2 moiety to a repeating peptide whether a repeating 
pentapeptide, e.g., (GVGVP)n going to (GVGIP)n or a repeating 
tetrapeptide, e.g., (GGVP)n going to (GGIP)n, lowers the value of Tt. 
On the other hand, removing two CH2 moieties, as in going from (GGVP)n 
to (GGAP)n or in going from (GVGVP)n going to (GAGVP)n, increases the 
value of Tt.  It is straightforward to deduce that the larger aliphatic 
moieties would have more water of hydrophobic hydration and that the 
smaller aliphatic moiety would have less hydrophobic hydration. 
Furthermore, the formation of a few carboxylates per 100 residues of 
poly[0.8(GVGVP),0.2(GEGVP)] dramatically increases the value of Tt  One 
proposes from this initial finding that lower values of Tt indicate 
greater hydrophobicity with more hydrophobic hydration and higher values 
of Tt indicate lesser hydrophobicity with less hydrophobic hydration and 
that the formation of anionic carboxylates destroys hydrophobic 
hydration.  This putative relationship is established below by a series 
of experimental results. 



Differential  Scanning Calorimetry  (DSC):  Effect  of charge on  the 
heat  of the hydrophobic folding and assembly transition:   Since the work 
of Frank and Evans in 1945, one appreciates that dissolution of a 
hydrophobic group in water is an exothermic reaction and that solubility- 
is limited due to the formation of low entropy, water structure 
surrounding the hydrophobic group.  Accordingly, AH is negative and AS 
is positive, resulting in a small value of the Gibbs free energy, AG = 
AH - TAS.  TO the extent that hydrophobic folding in a model protein 
can be represented as a reversal of hydrophobic dissolution, the 
endothermic heat required to drive hydrophobic folding represents the 
heat required to destructure hydrophobic hydration. Using 
poly[0.8(GVGVP),0.2(GEGVP)], the heat of the endothermic transition of 
hydrophobic folding and assembly decreases to one-fourth as two 
carboxylates form per 100 residues.  The smaller AH suggests less 
hydrophobic hydration and hydration of the carboxylate anion occurs at 
the expense of hydrophobic hydration.  This is consistent with a 
mechanism of competition for hydration between hydrophobic and charged 
moieties constrained to coexist along a polymer chain. 

Stretch-induced pKa shifts:   The first compelling insight, that a 
mechanism other than electrostatic charge-charge repulsion was operative 
for mechano-chemical transduction exhibited by these elastic protein- 
based polymers, came on determining the glutamic acid pKa resulting from 
stretching a hydrophobically folded elastic band of y-irradiation cross- 
linked poly[0.8(GVGVP),0.2(GEGVP)].  Stretching increased the pKa of the 
Glu residue carboxyl from about 4 to above 9 and resulted in a supra- 
linear increase in pKa with increase in mechanical force.  In terms of 
change in chemical potential, Afi, and change in applied force, Af, the 
experimentally determined 3)J./3f < 0, whereas for charge-charge repulsion 
the sign is reversed, 3(X/3f > 0.  This means that in spite of an 
increase in water in the elastic model protein band on stretching, the 
carboxylate increases in free energy, i.e., becomes energetically less 
favored.  It is clear that the dominant change in hydration on 
stretching a hydrophobically folded elastic band would be the formation 
of water of hydrophobic hydration.  The conclusion becomes that 
hydrophobic hydration is unsuited for carboxylate hydration and that in 
order to achieve its own hydration the carboxylate must pay for the 
energy required to destructure hydrophobic hydration.  If this is 
correct, then step-wise increasing hydrophobicity of an elastic model 
protein should systematically increase carboxyl pKa. 

Hydrophobic-induced pKa shifts:   Systematically replacing an 
ionizable residue in poly[fv(GVGIP) , fx(GXGIP) ] where fv + fx = 1 and X is 
either Glu (E), Asp (D) or Lys (K) by a hydrophobic Val residue causes 
the carboxyl pKa values to remarkably increase as fE and fD approach 
zero and the amino pKa values of Lys to decrease as fK approaches zero. 
Furthermore, in the family of model proteins, (GVGVP GVGßP GXGßP GVGVP 
GVGßP GßGßP)n, where X may be either E or D and where ß may be either V 
or F (Phe) and where the number of Phe residues are 0, 2, 3, 4, or 5, a 
supra linear increase in pKa occurs as F goes from 0 to 5.  Indeed, two 
different types of model protein systems involving three different 
functional groups demonstrated supra-linear increases in pKa shifts as 
hydrophobicity is stepwise increased. Hydrophobic-induced pKa shifts are 
more effective than electrostatic-induced pKa shifts when utilized in 
performance of chemo-mechanical transduction. More hydrophobic hydration 
present  in an unfolded polymer causes greater pKa  shifts  to be exhibited 
by the ionizable functions of the polymer! 

Proposal  of an apolar-polar repulsive free energy of hydration, 
AGap: Progressive increases in hydrophobicity progressively raise the 
free energy of charged side chains as reflected in the above noted 
progressive increases in pKa shifts.  As long as Tt is above 0C, the pKa 
shifts are seen without any change in state. Hydrophobic-induced pKa 
shifts can be observed while the model protein remains in the fully 
hydrated unfolded and unassembled state.  Thus, the pKa shift can not be 
ascribed to the change in dielectric constant on going from solution 
into a folded state.  This means that, when a charged species is 



tethered to a hydrophobic species, the two species will be positioned in 
order to achieve the most hydration unaltered by the other species.  In 
order that each species will have the maximal hydration, the lowest free 
energy at values below Tt  for the model protein, they will occupy the 
most distant positions allowed by their tether.  In other words, there 
exists an apolar polar repulsive free energy of hydration. 

One measure of this apolar polar repulsive free energy is the 
magnitude of the pKa shifts.  Since the chemical potential, (l, is given 
by |0. = RTlna where a is the activity, and since at normal values of pH, 
a = [H+] , |i = 2.3RTlog[H+] = -2.3 RT pH.   The change in chemical 
potential, A|l, resulting from a shift in pKa, becomes Au = -2.3RTApKa. 
As chemical potential is Gibbs free energy per mole, AG/An, the 
increase in free energy due to the apolar-polar repulsive free energy of 
hydration, AG , is 2.3RTApKa.  Since hydrophobic-induced pKa shifts as 
large as 6 pH units have been observed in designed model proteins, a 
repulsive free energy of greater than 8 kcal/mole has been 
experimentally observed.  This is the magnitude of free energy change 
whereby much of protein function occurs. 

Direct  observation of the water of hydrophobic hydration:   Using 
microwave dielectric relaxation to examine the behavior of water in 
model proteins capable of hydrophobic folding and assembly transitions, 
a relaxation due to water is observed near 5 GHz, some 10 GHz below that 
of bulk water.  This 5 GHz water results from interacting with the model 
protein; it increases on making the model protein more hydrophobic, and 
it disappears as the model protein hydrophobically folds and assembles. 
Therefore, it is water of hydrophobic hydration! 

The key question now becomes, what happens to this hydrophobic 
hydration on ionization of carboxylates within the model protein.  The 
answer, two-thirds of the water disappears as less than two carboxylates 
form per 100 residues of model protein.  This confirms interpretation of 
the above-described DSC results where three-fourths of the heat of the 
endothermic hydrophobic folding and assembly transition disappeared on 
formation of less than two carboxylates per 100 residues. Thus,   the 
microwave dielectric relaxation data constitute direct  observation of 
the competition for hydration between apolar and polar moieties! 

CONCLUSIONS: By means of this support we have: 1) experimentally developed 
five axioms for protein function and engineering by means of 
hydrophobic folding and assembly transitions, 2) demonstrated the 
physical basis underlying the "hydrophobic effect" to be an apolar- 
polar repulsive free energy of hydration, which can be estimated in 
specific cases by means of hydrophobic-induced pKa shifts, 3) a priori 
designed model proteins capable of performing diverse energy- 
conversions (free energy transductions) of biology, 4) provided data, 
which argues that protein function by controlling hydrophobic folding 
and assembly represents a far more efficient process than the commonly 
considered charge-charge interaction mechanism, 5) noted parallel 
phenomena with a number of biological systems, implying relevance to 
protein function in biology, and 6) used the above knowledge to develop 
medical and non-medical applications with feasibility demonstrated for 
both areas and with some 30 US patents issued and/or filed. 

SIGNIFICANCE:   The five axioms for protein function and engineering 
and the underlying physical process of competition for hydration between 
hydrophobic and polar moieties represent the nuts and bolts of protein 
function by means of hydrophobic folding and assembly. A systematic and 
comprehensive understanding of the role of hydrophobic folding and 
assembly in protein structure and function has been developed. 
Controlling hydrophobic folding and assembly can be argued to be a more 
efficient mechanism for free energy transduction than charge-charge 
interaction.  The axioms for hydrophobic folding and assembly in protein 
function and the underlying physical process represent fundamental 
developments in understanding protein function and engineering. 
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